题 目:Error estimate of the fully decoupled ZEC method to the Cahn-Hilliard phase field model for two-phase incompressible flows
主讲人:黄秋梅 教授
单 位:北京工业大学
时 间:2026年1月21日 14:40
地 点:九章学堂南楼C座302
摘 要:In the construction of high-order unconditionally energy stable numerical schemes for Cahn-Hilliard-Navier-Stokes model, the computational complexity arising from nonlinear coupling terms presents a significant challenge. To overcome this challenge, we reformulate the original model into an equivalent one and propose a fully decoupled, linear, Crank-Nicolson scheme. The unconditional energy stability of the proposed method is proved by the zero energy contribution property and the error estimate of the scheme is obtained by mathematical induction, which provide a framework for discretization schemes in coupled models. Some numerical experiments are performed to verify the efficiency of the considered scheme.
简 介:黄秋梅,教授,博士生导师,北京工业大学数学统计学与力学中文色情
院长。现任中国数学会理事、中国仿真学会仿真算法专委会委员、中国仿真学会不确定系统分析与仿真专委会委员、中国工业与应用数学学会谱方法专委会委员。发表SCI论文50余篇,主持5项国家自然科学基金,主持北京自然科学基金重点项目子课题、北京自然科学基金面上项目等,入选北京市科技新星计划、北京市教委青年拔尖人才计划,获贵州省科技进步二等奖、第五届北京高校青年教学名师奖、第五届全国高校教师教学创新大赛二等奖等。